Overview
This document compares Django and FastAPI based on real-world experience with Django and initial exploration of FastAPI for modern async development.
Our Background
- Django Experience: Many years of Django development
- Current Challenge: Adding async capabilities to originally synchronous Django code
- Current Stack: Django + Django REST Framework (DRF)
- Motivation: Seeking simpler async and API development
Django: The Battle-Tested Veteran
Strengths
- Mature Ecosystem: 15+ years of development, extensive community
- Battle-Tested: Proven to work reliably in production
- Comprehensive: Built-in admin, ORM, authentication, forms, etc.
- Stability: “Just keeps working” - fewer surprises
- Community Support: Massive ecosystem of packages, tutorials, and solutions
- Enterprise Ready: Used by major companies worldwide
Challenges with Modern Development
- Sync-First Architecture: Originally designed for synchronous operations
- Async Retrofitting: Adding async to existing sync code creates complexity
- Mixed Patterns: Developers must constantly think about sync vs async boundaries
- DRF Complexity: Additional layer adds complexity for API development
- Cognitive Overhead: Managing sync/async transitions can be error-prone
Async Challenges in Django
# Django: Mixed sync/async patterns can be confusing
from django.http import JsonResponse
import asyncio
# This works but feels awkward
async def my_view(request):
# Some async operations
result = await some_async_operation()
# But Django's ORM is sync by default
user = User.objects.get(id=1) # Sync operation in async view
return JsonResponse({'data': result})
The ORM Problem
Django’s ORM was designed for synchronous operations. While Django 3.1+ supports async views, the ORM remains primarily synchronous:
- Sync ORM in Async Views: Creates awkward mixed patterns
- Performance Issues: Database operations block the event loop
- Complex Workarounds: Need
sync_to_async
orasync_to_sync
wrappers - Cognitive Overhead: Developers must constantly think about sync/async boundaries
FastAPI: The Modern Challenger
Strengths
- Async-First Design: Built for async from the ground up
- Simpler API Development: No need for DRF - APIs are first-class citizens
- Type Safety: Built-in Pydantic integration for request/response validation
- Automatic Documentation: OpenAPI/Swagger docs generated automatically
- Performance: Async by default means better handling of concurrent requests
- Modern Python: Leverages Python 3.6+ features (type hints, async/await)
Example: FastAPI Simplicity
# FastAPI: Clean, async-first approach
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class UserResponse(BaseModel):
id: int
name: str
@app.get("/users/{user_id}", response_model=UserResponse)
async def get_user(user_id: int):
# Everything is async by default
user = await get_user_from_db(user_id)
return UserResponse(id=user.id, name=user.name)
Async ORM Options
FastAPI doesn’t include an ORM, but this allows you to choose async-first options:
SQLAlchemy 2.0 (Async)
from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine
from sqlalchemy.orm import sessionmaker
# Async engine and session
engine = create_async_engine("postgresql+asyncpg://user:pass@localhost/db")
AsyncSessionLocal = sessionmaker(engine, class_=AsyncSession)
@app.get("/users/{user_id}")
async def get_user(user_id: int, db: AsyncSession = Depends(get_db)):
# Fully async database operations
result = await db.execute(select(User).where(User.id == user_id))
user = result.scalar_one_or_none()
return user
Tortoise ORM (Async-First)
from tortoise import fields
from tortoise.models import Model
class User(Model):
id = fields.IntField(pk=True)
name = fields.CharField(max_length=255)
@app.get("/users/{user_id}")
async def get_user(user_id: int):
# Native async ORM
user = await User.get(id=user_id)
return user
Benefits of Async ORMs
- No Sync/Async Mixing: Everything is async by default
- Better Performance: Non-blocking database operations
- Cleaner Code: No need for sync/async wrappers
- Consistent Patterns: Same async patterns throughout the application
Pydantic Integration: Type Safety & Validation
What Pydantic Integration Means
FastAPI has first-class Pydantic integration, meaning:
- Automatic Validation: Request/response data is validated against Pydantic models
- Type Safety: Full type hints throughout the request/response cycle
- Automatic Documentation: OpenAPI/Swagger docs generated from Pydantic models
- Serialization: Automatic JSON serialization/deserialization
- IDE Support: Excellent autocomplete and type checking
FastAPI + Pydantic Example
from fastapi import FastAPI
from pydantic import BaseModel, Field
from typing import Optional
app = FastAPI()
class UserCreate(BaseModel):
name: str = Field(..., min_length=1, max_length=100)
email: str = Field(..., regex=r"^[^@]+@[^@]+\.[^@]+$")
age: Optional[int] = Field(None, ge=0, le=120)
class UserResponse(BaseModel):
id: int
name: str
email: str
age: Optional[int]
@app.post("/users/", response_model=UserResponse)
async def create_user(user: UserCreate):
# user is already validated and typed
# FastAPI automatically validates request body
# Returns are automatically serialized to JSON
return UserResponse(id=1, **user.dict())
Django: Manual Validation & Serialization
Django requires manual validation and serialization:
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
from django.core.validators import EmailValidator
from django.core.exceptions import ValidationError
import json
@csrf_exempt
def create_user(request):
if request.method != 'POST':
return JsonResponse({'error': 'Method not allowed'}, status=405)
try:
data = json.loads(request.body)
except json.JSONDecodeError:
return JsonResponse({'error': 'Invalid JSON'}, status=400)
# Manual validation
name = data.get('name', '').strip()
if not name or len(name) > 100:
return JsonResponse({'error': 'Invalid name'}, status=400)
email = data.get('email', '')
email_validator = EmailValidator()
try:
email_validator(email)
except ValidationError:
return JsonResponse({'error': 'Invalid email'}, status=400)
age = data.get('age')
if age is not None and (not isinstance(age, int) or age < 0 or age > 120):
return JsonResponse({'error': 'Invalid age'}, status=400)
# Manual serialization
return JsonResponse({
'id': 1,
'name': name,
'email': email,
'age': age
})
Django REST Framework: Better, But Still More Complex
DRF provides serializers, but they’re more verbose:
from rest_framework import serializers
from rest_framework.decorators import api_view
from rest_framework.response import Response
class UserCreateSerializer(serializers.Serializer):
name = serializers.CharField(max_length=100)
email = serializers.EmailField()
age = serializers.IntegerField(required=False, min_value=0, max_value=120)
class UserResponseSerializer(serializers.Serializer):
id = serializers.IntegerField()
name = serializers.CharField()
email = serializers.EmailField()
age = serializers.IntegerField(required=False)
@api_view(['POST'])
def create_user(request):
serializer = UserCreateSerializer(data=request.data)
if not serializer.is_valid():
return Response(serializer.errors, status=400)
# Manual response creation
response_data = {
'id': 1,
**serializer.validated_data
}
response_serializer = UserResponseSerializer(response_data)
return Response(response_serializer.data)
Key Differences
Aspect | FastAPI + Pydantic | Django + DRF |
---|---|---|
Validation | Automatic from type hints | Manual serializer classes |
Type Safety | Full type hints throughout | Limited type hints |
Documentation | Auto-generated from models | Manual documentation |
IDE Support | Excellent autocomplete | Limited autocomplete |
Boilerplate | Minimal | More verbose |
Learning Curve | Python type hints | DRF-specific patterns |
Automatic Documentation: FastAPI’s Killer Feature
What is Automatic Documentation?
FastAPI automatically generates interactive API documentation from your code, including:
- OpenAPI/Swagger UI: Interactive web interface to test your API
- ReDoc: Alternative documentation interface
- OpenAPI JSON: Machine-readable API specification
- Request/Response Examples: Auto-generated from your Pydantic models
- Type Information: Complete parameter types and validation rules
How to Test FastAPI Documentation
-
Start your FastAPI server:
uvicorn your_app:app --reload
-
Visit the documentation:
- Swagger UI:
http://localhost:8000/docs
- ReDoc:
http://localhost:8000/redoc
- OpenAPI JSON:
http://localhost:8000/openapi.json
- Swagger UI:
-
Interactive Testing: Click “Try it out” in Swagger UI to test endpoints directly
FastAPI Documentation Example
from fastapi import FastAPI, Query, Path
from pydantic import BaseModel, Field
from typing import Optional
app = FastAPI(
title="User Management API",
description="A simple API for managing users",
version="1.0.0"
)
class UserCreate(BaseModel):
name: str = Field(..., min_length=1, max_length=100, description="User's full name")
email: str = Field(..., description="User's email address")
age: Optional[int] = Field(None, ge=0, le=120, description="User's age")
class UserResponse(BaseModel):
id: int = Field(..., description="User's unique identifier")
name: str = Field(..., description="User's full name")
email: str = Field(..., description="User's email address")
age: Optional[int] = Field(None, description="User's age")
@app.get("/users/", response_model=list[UserResponse], summary="List Users")
async def list_users(
skip: int = Query(0, ge=0, description="Number of users to skip"),
limit: int = Query(10, ge=1, le=100, description="Maximum number of users to return")
):
"""Retrieve a list of users with pagination."""
return []
@app.get("/users/{user_id}", response_model=UserResponse, summary="Get User")
async def get_user(
user_id: int = Path(..., gt=0, description="User's unique identifier")
):
"""Retrieve a specific user by ID."""
return UserResponse(id=user_id, name="John Doe", email="john@example.com")
@app.post("/users/", response_model=UserResponse, status_code=201, summary="Create User")
async def create_user(user: UserCreate):
"""Create a new user."""
return UserResponse(id=1, **user.dict())
What You Get Automatically
-
Interactive API Explorer (
/docs
):- Test endpoints directly in the browser
- See request/response schemas
- View validation rules and examples
- Try different parameters
-
Complete API Specification (
/openapi.json
):- Machine-readable API definition
- Can be imported into tools like Postman
- Used by code generators
-
Alternative Documentation (
/redoc
):- Clean, readable documentation
- Better for sharing with non-technical stakeholders
Django Documentation Comparison
Django REST Framework: Manual Documentation
from rest_framework import serializers, viewsets
from rest_framework.decorators import action
from drf_spectacular.views import SpectacularAPIView, SpectacularSwaggerView
# Manual serializer definitions
class UserSerializer(serializers.ModelSerializer):
class Meta:
model = User
fields = ['id', 'name', 'email', 'age']
# Manual viewset with documentation
class UserViewSet(viewsets.ModelViewSet):
queryset = User.objects.all()
serializer_class = UserSerializer
@action(detail=True, methods=['post'])
def activate(self, request, pk=None):
"""Manually documented endpoint."""
pass
# Manual URL configuration for documentation
urlpatterns = [
path('api/schema/', SpectacularAPIView.as_view(), name='schema'),
path('api/docs/', SpectacularSwaggerView.as_view(url_name='schema'), name='swagger-ui'),
]
Django: No Built-in Documentation
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
@csrf_exempt
def create_user(request):
"""
Manual documentation - you have to write everything yourself.
No automatic generation, no interactive testing.
"""
if request.method != 'POST':
return JsonResponse({'error': 'Method not allowed'}, status=405)
# Manual validation and processing
return JsonResponse({'message': 'User created'})
Documentation Comparison Table
Feature | FastAPI | Django + DRF | Django |
---|---|---|---|
Interactive Testing | ![]() |
![]() |
![]() |
Auto-generated Examples | ![]() |
![]() |
![]() |
Type Information | ![]() |
![]() |
![]() |
Validation Rules | ![]() |
![]() |
![]() |
Request/Response Schemas | ![]() |
![]() |
![]() |
API Versioning | ![]() |
![]() |
![]() |
Export Formats | ![]() |
![]() |
![]() |
Testing the Documentation
FastAPI Test Steps:
-
Create a simple FastAPI app:
from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class Item(BaseModel): name: str price: float @app.get("/items/{item_id}") async def get_item(item_id: int): return {"item_id": item_id, "name": "Sample Item"} @app.post("/items/") async def create_item(item: Item): return item
-
Run the server:
uvicorn main:app --reload
-
Visit the documentation:
- Go to
http://localhost:8000/docs
- Click “Try it out” on any endpoint
- Test with different parameters
- See automatic validation in action
- Go to
Django Test Steps:
-
Install drf-spectacular (for DRF):
pip install drf-spectacular
-
Configure manually:
INSTALLED_APPS = [ 'drf_spectacular', ] SPECTACULAR_SETTINGS = { 'TITLE': 'Your API', 'VERSION': '1.0.0', }
-
Add URLs manually:
urlpatterns = [ path('api/schema/', SpectacularAPIView.as_view(), name='schema'), path('api/docs/', SpectacularSwaggerView.as_view(url_name='schema'), name='swagger-ui'), ]
Key Advantages of FastAPI Documentation
- Zero Configuration: Works out of the box
- Always Up-to-Date: Documentation matches your code automatically
- Interactive Testing: Test your API directly from the docs
- Type Safety: Documentation reflects actual types and validation
- Multiple Formats: Swagger UI, ReDoc, OpenAPI JSON
- Professional Quality: Production-ready documentation
Real-World Impact
- Faster Development: No need to maintain separate documentation
- Better Testing: Interactive docs help with API testing
- Client Integration: Frontend developers can explore the API easily
- API Contracts: Clear, machine-readable API specifications
- Onboarding: New team members can understand the API quickly
Potential Concerns
- Newer Technology: Less battle-tested than Django
- Smaller Community: Fewer packages, tutorials, and solutions
- Ecosystem Maturity: Missing some Django conveniences (admin, forms, etc.)
- Learning Curve: Team needs to learn new patterns
- Unknown Unknowns: May encounter problems that take longer to solve
Key Trade-offs Analysis
Development Speed
Aspect | Django | FastAPI |
---|---|---|
Initial Setup | More boilerplate, but familiar | Simpler, but new patterns |
API Development | DRF adds complexity | Built-in, simpler |
Async Development | Requires careful sync/async management | Natural async flow |
Debugging | Mature tooling and community | Less mature ecosystem |
Community and Ecosystem
Factor | Django | FastAPI |
---|---|---|
Age | 15+ years | 5+ years |
Community Size | Massive | Growing rapidly |
Package Ecosystem | Extensive | Smaller but growing |
Documentation | Comprehensive | Good but less extensive |
Stack Overflow | Many solutions | Fewer solutions |
Production Readiness
Consideration | Django | FastAPI |
---|---|---|
Battle-Tested | ![]() |
![]() |
Enterprise Adoption | ![]() |
![]() |
Performance | Good (with async) | Excellent (async-first) |
Scalability | Good | Excellent |
Maintenance | ![]() |
![]() |
Assessment Criteria
What to Look For
-
Async Development Complexity
- How much cognitive overhead does async add?
- Are there clear patterns for sync/async boundaries?
- How well does the framework handle mixed sync/async code?
-
API Development Experience
- How much boilerplate is required?
- How good is the developer experience?
- How well does it handle validation and serialization?
-
Community Support
- How quickly can we find solutions to problems?
- How mature are the packages we need?
- How active is the community?
-
Production Stability
- How reliable is the framework in production?
- How well does it handle edge cases?
- How mature is the deployment story?
-
Team Learning Curve
- How much training will the team need?
- How different are the patterns from Django?
- How steep is the learning curve?
Red Flags to Watch For
- Async Complexity: If async development feels more complex than Django
- Missing Ecosystem: If we constantly need to build things Django provides
- Community Gaps: If we can’t find solutions to common problems
- Performance Issues: If async doesn’t provide expected benefits
- Integration Problems: If FastAPI doesn’t work well with our existing tools
Recommendation
For Our Use Case
Given our experience with Django async challenges and the need for simpler API development, FastAPI appears to be a good fit because:
- Async-First: Eliminates the sync/async complexity we’ve experienced
- Simpler APIs: No DRF layer to manage
- Modern Patterns: Built for current web development needs
- Performance: Better suited for real-time features (SSE, streaming)
Risk Mitigation
- Start Small: Begin with a small project to evaluate
- Monitor Community: Track FastAPI adoption and ecosystem growth
- Fallback Plan: Keep Django knowledge fresh in case we need to pivot
- Gradual Migration: Consider hybrid approach if needed
Success Metrics
- Reduced development time for async features
- Simpler API development workflow
- Better performance for concurrent requests
- Team productivity with new patterns
- Fewer async-related bugs
Conclusion
FastAPI represents a modern approach that addresses many of the pain points we’ve experienced with Django’s async retrofitting. While the smaller community and newer technology present some risks, the async-first design and simpler API development make it worth exploring for our specific needs.
The key is to approach this as an experiment - start small, measure the benefits, and be prepared to adapt based on what we learn.